Exercise 61

Find the absolute maximum and absolute minimum values of f on the given interval.

$$
f(x)=\ln \left(x^{2}+x+1\right), \quad[-1,1]
$$

Solution

Take the derivative of the function.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x} \ln \left(x^{2}+x+1\right) \\
& =\frac{1}{x^{2}+x+1} \cdot \frac{d}{d x}\left(x^{2}+x+1\right) \\
& =\frac{1}{x^{2}+x+1} \cdot(2 x+1) \\
& =\frac{2 x+1}{x^{2}+x+1}
\end{aligned}
$$

Set what's in the numerator equal to zero, and set what's in the denominator equal to zero. Solve each equation for x.

$$
\begin{array}{rr}
2 x+1=0 & x^{2}+x+1=0 \\
x=-\frac{1}{2} & x=\frac{-1 \pm \sqrt{1^{2}-4(1)(1)}}{2} \\
x=-\frac{1}{2} & x=\frac{-1 \pm i \sqrt{3}}{2}
\end{array}
$$

$x=-1 / 2$ is within $[-1,1]$, so evaluate f here.

$$
f\left(-\frac{1}{2}\right)=\ln \left[\left(-\frac{1}{2}\right)^{2}+\left(-\frac{1}{2}\right)+1\right]=-\ln \frac{4}{3} \approx-0.287682 \quad \text { (absolute minimum) }
$$

Now evaluate the function at the endpoints of the interval.

$$
\begin{align*}
f(-1) & =\ln \left[(-1)^{2}+(-1)+1\right]=0 \\
f(1) & =\ln \left[(1)^{2}+(1)+1\right]=\ln 3 \approx 1.09861 \tag{absolutemaximum}
\end{align*}
$$

The smallest and largest of these numbers are the absolute minimum and maximum, respectively, over the interval $[-1,1]$.

The graph of the function below illustrates these results.

